3.33 \(\int \frac {1}{(a+b x^2)^2 (c+d x^2)^2} \, dx\)

Optimal. Leaf size=167 \[ \frac {b^{3/2} (b c-5 a d) \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{2 a^{3/2} (b c-a d)^3}+\frac {d^{3/2} (5 b c-a d) \tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )}{2 c^{3/2} (b c-a d)^3}+\frac {b x}{2 a \left (a+b x^2\right ) \left (c+d x^2\right ) (b c-a d)}+\frac {d x (a d+b c)}{2 a c \left (c+d x^2\right ) (b c-a d)^2} \]

[Out]

1/2*d*(a*d+b*c)*x/a/c/(-a*d+b*c)^2/(d*x^2+c)+1/2*b*x/a/(-a*d+b*c)/(b*x^2+a)/(d*x^2+c)+1/2*b^(3/2)*(-5*a*d+b*c)
*arctan(x*b^(1/2)/a^(1/2))/a^(3/2)/(-a*d+b*c)^3+1/2*d^(3/2)*(-a*d+5*b*c)*arctan(x*d^(1/2)/c^(1/2))/c^(3/2)/(-a
*d+b*c)^3

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {414, 527, 522, 205} \[ \frac {b^{3/2} (b c-5 a d) \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{2 a^{3/2} (b c-a d)^3}+\frac {d^{3/2} (5 b c-a d) \tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )}{2 c^{3/2} (b c-a d)^3}+\frac {b x}{2 a \left (a+b x^2\right ) \left (c+d x^2\right ) (b c-a d)}+\frac {d x (a d+b c)}{2 a c \left (c+d x^2\right ) (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^2)^2*(c + d*x^2)^2),x]

[Out]

(d*(b*c + a*d)*x)/(2*a*c*(b*c - a*d)^2*(c + d*x^2)) + (b*x)/(2*a*(b*c - a*d)*(a + b*x^2)*(c + d*x^2)) + (b^(3/
2)*(b*c - 5*a*d)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/(2*a^(3/2)*(b*c - a*d)^3) + (d^(3/2)*(5*b*c - a*d)*ArcTan[(Sqrt[
d]*x)/Sqrt[c]])/(2*c^(3/2)*(b*c - a*d)^3)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^2} \, dx &=\frac {b x}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )}-\frac {\int \frac {-b c+2 a d-3 b d x^2}{\left (a+b x^2\right ) \left (c+d x^2\right )^2} \, dx}{2 a (b c-a d)}\\ &=\frac {d (b c+a d) x}{2 a c (b c-a d)^2 \left (c+d x^2\right )}+\frac {b x}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )}-\frac {\int \frac {-2 \left (b^2 c^2-4 a b c d+a^2 d^2\right )-2 b d (b c+a d) x^2}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx}{4 a c (b c-a d)^2}\\ &=\frac {d (b c+a d) x}{2 a c (b c-a d)^2 \left (c+d x^2\right )}+\frac {b x}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )}+\frac {\left (b^2 (b c-5 a d)\right ) \int \frac {1}{a+b x^2} \, dx}{2 a (b c-a d)^3}+\frac {\left (d^2 (5 b c-a d)\right ) \int \frac {1}{c+d x^2} \, dx}{2 c (b c-a d)^3}\\ &=\frac {d (b c+a d) x}{2 a c (b c-a d)^2 \left (c+d x^2\right )}+\frac {b x}{2 a (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )}+\frac {b^{3/2} (b c-5 a d) \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{2 a^{3/2} (b c-a d)^3}+\frac {d^{3/2} (5 b c-a d) \tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )}{2 c^{3/2} (b c-a d)^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 136, normalized size = 0.81 \[ \frac {1}{2} \left (\frac {b^{3/2} (5 a d-b c) \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{a^{3/2} (a d-b c)^3}+\frac {x (b c-a d) \left (\frac {b^2}{a^2+a b x^2}+\frac {d^2}{c^2+c d x^2}\right )+\frac {d^{3/2} (5 b c-a d) \tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )}{c^{3/2}}}{(b c-a d)^3}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^2)^2*(c + d*x^2)^2),x]

[Out]

((b^(3/2)*(-(b*c) + 5*a*d)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/(a^(3/2)*(-(b*c) + a*d)^3) + ((b*c - a*d)*x*(b^2/(a^2
+ a*b*x^2) + d^2/(c^2 + c*d*x^2)) + (d^(3/2)*(5*b*c - a*d)*ArcTan[(Sqrt[d]*x)/Sqrt[c]])/c^(3/2))/(b*c - a*d)^3
)/2

________________________________________________________________________________________

fricas [B]  time = 1.64, size = 1681, normalized size = 10.07 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^2/(d*x^2+c)^2,x, algorithm="fricas")

[Out]

[1/4*(2*(b^3*c^2*d - a^2*b*d^3)*x^3 + (a*b^2*c^3 - 5*a^2*b*c^2*d + (b^3*c^2*d - 5*a*b^2*c*d^2)*x^4 + (b^3*c^3
- 4*a*b^2*c^2*d - 5*a^2*b*c*d^2)*x^2)*sqrt(-b/a)*log((b*x^2 + 2*a*x*sqrt(-b/a) - a)/(b*x^2 + a)) + (5*a^2*b*c^
2*d - a^3*c*d^2 + (5*a*b^2*c*d^2 - a^2*b*d^3)*x^4 + (5*a*b^2*c^2*d + 4*a^2*b*c*d^2 - a^3*d^3)*x^2)*sqrt(-d/c)*
log((d*x^2 + 2*c*x*sqrt(-d/c) - c)/(d*x^2 + c)) + 2*(b^3*c^3 - a*b^2*c^2*d + a^2*b*c*d^2 - a^3*d^3)*x)/(a^2*b^
3*c^5 - 3*a^3*b^2*c^4*d + 3*a^4*b*c^3*d^2 - a^5*c^2*d^3 + (a*b^4*c^4*d - 3*a^2*b^3*c^3*d^2 + 3*a^3*b^2*c^2*d^3
 - a^4*b*c*d^4)*x^4 + (a*b^4*c^5 - 2*a^2*b^3*c^4*d + 2*a^4*b*c^2*d^3 - a^5*c*d^4)*x^2), 1/4*(2*(b^3*c^2*d - a^
2*b*d^3)*x^3 + 2*(5*a^2*b*c^2*d - a^3*c*d^2 + (5*a*b^2*c*d^2 - a^2*b*d^3)*x^4 + (5*a*b^2*c^2*d + 4*a^2*b*c*d^2
 - a^3*d^3)*x^2)*sqrt(d/c)*arctan(x*sqrt(d/c)) + (a*b^2*c^3 - 5*a^2*b*c^2*d + (b^3*c^2*d - 5*a*b^2*c*d^2)*x^4
+ (b^3*c^3 - 4*a*b^2*c^2*d - 5*a^2*b*c*d^2)*x^2)*sqrt(-b/a)*log((b*x^2 + 2*a*x*sqrt(-b/a) - a)/(b*x^2 + a)) +
2*(b^3*c^3 - a*b^2*c^2*d + a^2*b*c*d^2 - a^3*d^3)*x)/(a^2*b^3*c^5 - 3*a^3*b^2*c^4*d + 3*a^4*b*c^3*d^2 - a^5*c^
2*d^3 + (a*b^4*c^4*d - 3*a^2*b^3*c^3*d^2 + 3*a^3*b^2*c^2*d^3 - a^4*b*c*d^4)*x^4 + (a*b^4*c^5 - 2*a^2*b^3*c^4*d
 + 2*a^4*b*c^2*d^3 - a^5*c*d^4)*x^2), 1/4*(2*(b^3*c^2*d - a^2*b*d^3)*x^3 + 2*(a*b^2*c^3 - 5*a^2*b*c^2*d + (b^3
*c^2*d - 5*a*b^2*c*d^2)*x^4 + (b^3*c^3 - 4*a*b^2*c^2*d - 5*a^2*b*c*d^2)*x^2)*sqrt(b/a)*arctan(x*sqrt(b/a)) + (
5*a^2*b*c^2*d - a^3*c*d^2 + (5*a*b^2*c*d^2 - a^2*b*d^3)*x^4 + (5*a*b^2*c^2*d + 4*a^2*b*c*d^2 - a^3*d^3)*x^2)*s
qrt(-d/c)*log((d*x^2 + 2*c*x*sqrt(-d/c) - c)/(d*x^2 + c)) + 2*(b^3*c^3 - a*b^2*c^2*d + a^2*b*c*d^2 - a^3*d^3)*
x)/(a^2*b^3*c^5 - 3*a^3*b^2*c^4*d + 3*a^4*b*c^3*d^2 - a^5*c^2*d^3 + (a*b^4*c^4*d - 3*a^2*b^3*c^3*d^2 + 3*a^3*b
^2*c^2*d^3 - a^4*b*c*d^4)*x^4 + (a*b^4*c^5 - 2*a^2*b^3*c^4*d + 2*a^4*b*c^2*d^3 - a^5*c*d^4)*x^2), 1/2*((b^3*c^
2*d - a^2*b*d^3)*x^3 + (a*b^2*c^3 - 5*a^2*b*c^2*d + (b^3*c^2*d - 5*a*b^2*c*d^2)*x^4 + (b^3*c^3 - 4*a*b^2*c^2*d
 - 5*a^2*b*c*d^2)*x^2)*sqrt(b/a)*arctan(x*sqrt(b/a)) + (5*a^2*b*c^2*d - a^3*c*d^2 + (5*a*b^2*c*d^2 - a^2*b*d^3
)*x^4 + (5*a*b^2*c^2*d + 4*a^2*b*c*d^2 - a^3*d^3)*x^2)*sqrt(d/c)*arctan(x*sqrt(d/c)) + (b^3*c^3 - a*b^2*c^2*d
+ a^2*b*c*d^2 - a^3*d^3)*x)/(a^2*b^3*c^5 - 3*a^3*b^2*c^4*d + 3*a^4*b*c^3*d^2 - a^5*c^2*d^3 + (a*b^4*c^4*d - 3*
a^2*b^3*c^3*d^2 + 3*a^3*b^2*c^2*d^3 - a^4*b*c*d^4)*x^4 + (a*b^4*c^5 - 2*a^2*b^3*c^4*d + 2*a^4*b*c^2*d^3 - a^5*
c*d^4)*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.58, size = 232, normalized size = 1.39 \[ \frac {{\left (b^{3} c - 5 \, a b^{2} d\right )} \arctan \left (\frac {b x}{\sqrt {a b}}\right )}{2 \, {\left (a b^{3} c^{3} - 3 \, a^{2} b^{2} c^{2} d + 3 \, a^{3} b c d^{2} - a^{4} d^{3}\right )} \sqrt {a b}} + \frac {{\left (5 \, b c d^{2} - a d^{3}\right )} \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{2 \, {\left (b^{3} c^{4} - 3 \, a b^{2} c^{3} d + 3 \, a^{2} b c^{2} d^{2} - a^{3} c d^{3}\right )} \sqrt {c d}} + \frac {b^{2} c d x^{3} + a b d^{2} x^{3} + b^{2} c^{2} x + a^{2} d^{2} x}{2 \, {\left (a b^{2} c^{3} - 2 \, a^{2} b c^{2} d + a^{3} c d^{2}\right )} {\left (b d x^{4} + b c x^{2} + a d x^{2} + a c\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^2/(d*x^2+c)^2,x, algorithm="giac")

[Out]

1/2*(b^3*c - 5*a*b^2*d)*arctan(b*x/sqrt(a*b))/((a*b^3*c^3 - 3*a^2*b^2*c^2*d + 3*a^3*b*c*d^2 - a^4*d^3)*sqrt(a*
b)) + 1/2*(5*b*c*d^2 - a*d^3)*arctan(d*x/sqrt(c*d))/((b^3*c^4 - 3*a*b^2*c^3*d + 3*a^2*b*c^2*d^2 - a^3*c*d^3)*s
qrt(c*d)) + 1/2*(b^2*c*d*x^3 + a*b*d^2*x^3 + b^2*c^2*x + a^2*d^2*x)/((a*b^2*c^3 - 2*a^2*b*c^2*d + a^3*c*d^2)*(
b*d*x^4 + b*c*x^2 + a*d*x^2 + a*c))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 238, normalized size = 1.43 \[ \frac {a \,d^{3} x}{2 \left (a d -b c \right )^{3} \left (d \,x^{2}+c \right ) c}+\frac {a \,d^{3} \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{2 \left (a d -b c \right )^{3} \sqrt {c d}\, c}-\frac {b^{3} c x}{2 \left (a d -b c \right )^{3} \left (b \,x^{2}+a \right ) a}-\frac {b^{3} c \arctan \left (\frac {b x}{\sqrt {a b}}\right )}{2 \left (a d -b c \right )^{3} \sqrt {a b}\, a}+\frac {b^{2} d x}{2 \left (a d -b c \right )^{3} \left (b \,x^{2}+a \right )}+\frac {5 b^{2} d \arctan \left (\frac {b x}{\sqrt {a b}}\right )}{2 \left (a d -b c \right )^{3} \sqrt {a b}}-\frac {b \,d^{2} x}{2 \left (a d -b c \right )^{3} \left (d \,x^{2}+c \right )}-\frac {5 b \,d^{2} \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{2 \left (a d -b c \right )^{3} \sqrt {c d}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)^2/(d*x^2+c)^2,x)

[Out]

1/2*d^3/(a*d-b*c)^3/c*x/(d*x^2+c)*a-1/2*d^2/(a*d-b*c)^3*x/(d*x^2+c)*b+1/2*d^3/(a*d-b*c)^3/c/(c*d)^(1/2)*arctan
(1/(c*d)^(1/2)*d*x)*a-5/2*d^2/(a*d-b*c)^3/(c*d)^(1/2)*arctan(1/(c*d)^(1/2)*d*x)*b+1/2*b^2/(a*d-b*c)^3*x/(b*x^2
+a)*d-1/2*b^3/(a*d-b*c)^3/a*x/(b*x^2+a)*c+5/2*b^2/(a*d-b*c)^3/(a*b)^(1/2)*arctan(1/(a*b)^(1/2)*b*x)*d-1/2*b^3/
(a*d-b*c)^3/a/(a*b)^(1/2)*arctan(1/(a*b)^(1/2)*b*x)*c

________________________________________________________________________________________

maxima [B]  time = 3.14, size = 294, normalized size = 1.76 \[ \frac {{\left (b^{3} c - 5 \, a b^{2} d\right )} \arctan \left (\frac {b x}{\sqrt {a b}}\right )}{2 \, {\left (a b^{3} c^{3} - 3 \, a^{2} b^{2} c^{2} d + 3 \, a^{3} b c d^{2} - a^{4} d^{3}\right )} \sqrt {a b}} + \frac {{\left (5 \, b c d^{2} - a d^{3}\right )} \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{2 \, {\left (b^{3} c^{4} - 3 \, a b^{2} c^{3} d + 3 \, a^{2} b c^{2} d^{2} - a^{3} c d^{3}\right )} \sqrt {c d}} + \frac {{\left (b^{2} c d + a b d^{2}\right )} x^{3} + {\left (b^{2} c^{2} + a^{2} d^{2}\right )} x}{2 \, {\left (a^{2} b^{2} c^{4} - 2 \, a^{3} b c^{3} d + a^{4} c^{2} d^{2} + {\left (a b^{3} c^{3} d - 2 \, a^{2} b^{2} c^{2} d^{2} + a^{3} b c d^{3}\right )} x^{4} + {\left (a b^{3} c^{4} - a^{2} b^{2} c^{3} d - a^{3} b c^{2} d^{2} + a^{4} c d^{3}\right )} x^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^2/(d*x^2+c)^2,x, algorithm="maxima")

[Out]

1/2*(b^3*c - 5*a*b^2*d)*arctan(b*x/sqrt(a*b))/((a*b^3*c^3 - 3*a^2*b^2*c^2*d + 3*a^3*b*c*d^2 - a^4*d^3)*sqrt(a*
b)) + 1/2*(5*b*c*d^2 - a*d^3)*arctan(d*x/sqrt(c*d))/((b^3*c^4 - 3*a*b^2*c^3*d + 3*a^2*b*c^2*d^2 - a^3*c*d^3)*s
qrt(c*d)) + 1/2*((b^2*c*d + a*b*d^2)*x^3 + (b^2*c^2 + a^2*d^2)*x)/(a^2*b^2*c^4 - 2*a^3*b*c^3*d + a^4*c^2*d^2 +
 (a*b^3*c^3*d - 2*a^2*b^2*c^2*d^2 + a^3*b*c*d^3)*x^4 + (a*b^3*c^4 - a^2*b^2*c^3*d - a^3*b*c^2*d^2 + a^4*c*d^3)
*x^2)

________________________________________________________________________________________

mupad [B]  time = 6.87, size = 6183, normalized size = 37.02 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^2)^2*(c + d*x^2)^2),x)

[Out]

((x*(a^2*d^2 + b^2*c^2))/(2*a*c*(a^2*d^2 + b^2*c^2 - 2*a*b*c*d)) + (b*d*x^3*(a*d + b*c))/(2*a*c*(a^2*d^2 + b^2
*c^2 - 2*a*b*c*d)))/(a*c + x^2*(a*d + b*c) + b*d*x^4) + (atan(((((x*(a^4*b^3*d^7 + b^7*c^4*d^3 - 10*a*b^6*c^3*
d^4 - 10*a^3*b^4*c*d^6 + 50*a^2*b^5*c^2*d^5))/(2*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^
3 + 6*a^4*b^2*c^4*d^2)) - (((2*a*b^10*c^9*d^2 + 2*a^9*b^2*c*d^10 - 20*a^2*b^9*c^8*d^3 + 80*a^3*b^8*c^7*d^4 - 1
72*a^4*b^7*c^6*d^5 + 220*a^5*b^6*c^5*d^6 - 172*a^6*b^5*c^4*d^7 + 80*a^7*b^4*c^3*d^8 - 20*a^8*b^3*c^2*d^9)/(a^2
*b^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3*d^5 + 15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*
b^2*c^4*d^4) - (x*(5*a*d - b*c)*(-a^3*b^3)^(1/2)*(16*a^2*b^9*c^9*d^2 - 80*a^3*b^8*c^8*d^3 + 144*a^4*b^7*c^7*d^
4 - 80*a^5*b^6*c^6*d^5 - 80*a^6*b^5*c^5*d^6 + 144*a^7*b^4*c^4*d^7 - 80*a^8*b^3*c^3*d^8 + 16*a^9*b^2*c^2*d^9))/
(8*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*c*d^2)*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*
a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)))*(5*a*d - b*c)*(-a^3*b^3)^(1/2))/(4*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2
*d - 3*a^5*b*c*d^2)))*(5*a*d - b*c)*(-a^3*b^3)^(1/2)*1i)/(4*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b
*c*d^2)) + (((x*(a^4*b^3*d^7 + b^7*c^4*d^3 - 10*a*b^6*c^3*d^4 - 10*a^3*b^4*c*d^6 + 50*a^2*b^5*c^2*d^5))/(2*(a^
2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)) + (((2*a*b^10*c^9*d^2 + 2*a^
9*b^2*c*d^10 - 20*a^2*b^9*c^8*d^3 + 80*a^3*b^8*c^7*d^4 - 172*a^4*b^7*c^6*d^5 + 220*a^5*b^6*c^5*d^6 - 172*a^6*b
^5*c^4*d^7 + 80*a^7*b^4*c^3*d^8 - 20*a^8*b^3*c^2*d^9)/(a^2*b^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c
^3*d^5 + 15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*b^2*c^4*d^4) + (x*(5*a*d - b*c)*(-a^3*b^3)^(1/2)*(16
*a^2*b^9*c^9*d^2 - 80*a^3*b^8*c^8*d^3 + 144*a^4*b^7*c^7*d^4 - 80*a^5*b^6*c^6*d^5 - 80*a^6*b^5*c^5*d^6 + 144*a^
7*b^4*c^4*d^7 - 80*a^8*b^3*c^3*d^8 + 16*a^9*b^2*c^2*d^9))/(8*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*
b*c*d^2)*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)))*(5*a*d - b*c)*(
-a^3*b^3)^(1/2))/(4*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*c*d^2)))*(5*a*d - b*c)*(-a^3*b^3)^(1/2)
*1i)/(4*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*c*d^2)))/(((5*a^3*b^4*d^7)/4 + (5*b^7*c^3*d^4)/4 -
(21*a*b^6*c^2*d^5)/4 - (21*a^2*b^5*c*d^6)/4)/(a^2*b^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3*d^5 +
15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*b^2*c^4*d^4) - (((x*(a^4*b^3*d^7 + b^7*c^4*d^3 - 10*a*b^6*c^3
*d^4 - 10*a^3*b^4*c*d^6 + 50*a^2*b^5*c^2*d^5))/(2*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d
^3 + 6*a^4*b^2*c^4*d^2)) - (((2*a*b^10*c^9*d^2 + 2*a^9*b^2*c*d^10 - 20*a^2*b^9*c^8*d^3 + 80*a^3*b^8*c^7*d^4 -
172*a^4*b^7*c^6*d^5 + 220*a^5*b^6*c^5*d^6 - 172*a^6*b^5*c^4*d^7 + 80*a^7*b^4*c^3*d^8 - 20*a^8*b^3*c^2*d^9)/(a^
2*b^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3*d^5 + 15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6
*b^2*c^4*d^4) - (x*(5*a*d - b*c)*(-a^3*b^3)^(1/2)*(16*a^2*b^9*c^9*d^2 - 80*a^3*b^8*c^8*d^3 + 144*a^4*b^7*c^7*d
^4 - 80*a^5*b^6*c^6*d^5 - 80*a^6*b^5*c^5*d^6 + 144*a^7*b^4*c^4*d^7 - 80*a^8*b^3*c^3*d^8 + 16*a^9*b^2*c^2*d^9))
/(8*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*c*d^2)*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4
*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)))*(5*a*d - b*c)*(-a^3*b^3)^(1/2))/(4*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^
2*d - 3*a^5*b*c*d^2)))*(5*a*d - b*c)*(-a^3*b^3)^(1/2))/(4*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*c
*d^2)) + (((x*(a^4*b^3*d^7 + b^7*c^4*d^3 - 10*a*b^6*c^3*d^4 - 10*a^3*b^4*c*d^6 + 50*a^2*b^5*c^2*d^5))/(2*(a^2*
b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)) + (((2*a*b^10*c^9*d^2 + 2*a^9*
b^2*c*d^10 - 20*a^2*b^9*c^8*d^3 + 80*a^3*b^8*c^7*d^4 - 172*a^4*b^7*c^6*d^5 + 220*a^5*b^6*c^5*d^6 - 172*a^6*b^5
*c^4*d^7 + 80*a^7*b^4*c^3*d^8 - 20*a^8*b^3*c^2*d^9)/(a^2*b^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3
*d^5 + 15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*b^2*c^4*d^4) + (x*(5*a*d - b*c)*(-a^3*b^3)^(1/2)*(16*a
^2*b^9*c^9*d^2 - 80*a^3*b^8*c^8*d^3 + 144*a^4*b^7*c^7*d^4 - 80*a^5*b^6*c^6*d^5 - 80*a^6*b^5*c^5*d^6 + 144*a^7*
b^4*c^4*d^7 - 80*a^8*b^3*c^3*d^8 + 16*a^9*b^2*c^2*d^9))/(8*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*
c*d^2)*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)))*(5*a*d - b*c)*(-a
^3*b^3)^(1/2))/(4*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*c*d^2)))*(5*a*d - b*c)*(-a^3*b^3)^(1/2))/
(4*(a^6*d^3 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*c*d^2))))*(5*a*d - b*c)*(-a^3*b^3)^(1/2)*1i)/(2*(a^6*d^3
 - a^3*b^3*c^3 + 3*a^4*b^2*c^2*d - 3*a^5*b*c*d^2)) + (atan(((((x*(a^4*b^3*d^7 + b^7*c^4*d^3 - 10*a*b^6*c^3*d^4
 - 10*a^3*b^4*c*d^6 + 50*a^2*b^5*c^2*d^5))/(2*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 +
 6*a^4*b^2*c^4*d^2)) - (((2*a*b^10*c^9*d^2 + 2*a^9*b^2*c*d^10 - 20*a^2*b^9*c^8*d^3 + 80*a^3*b^8*c^7*d^4 - 172*
a^4*b^7*c^6*d^5 + 220*a^5*b^6*c^5*d^6 - 172*a^6*b^5*c^4*d^7 + 80*a^7*b^4*c^3*d^8 - 20*a^8*b^3*c^2*d^9)/(a^2*b^
6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3*d^5 + 15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*b^2
*c^4*d^4) - (x*(a*d - 5*b*c)*(-c^3*d^3)^(1/2)*(16*a^2*b^9*c^9*d^2 - 80*a^3*b^8*c^8*d^3 + 144*a^4*b^7*c^7*d^4 -
 80*a^5*b^6*c^6*d^5 - 80*a^6*b^5*c^5*d^6 + 144*a^7*b^4*c^4*d^7 - 80*a^8*b^3*c^3*d^8 + 16*a^9*b^2*c^2*d^9))/(8*
(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5*d)*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5
*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)))*(a*d - 5*b*c)*(-c^3*d^3)^(1/2))/(4*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2
- 3*a*b^2*c^5*d)))*(a*d - 5*b*c)*(-c^3*d^3)^(1/2)*1i)/(4*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^
5*d)) + (((x*(a^4*b^3*d^7 + b^7*c^4*d^3 - 10*a*b^6*c^3*d^4 - 10*a^3*b^4*c*d^6 + 50*a^2*b^5*c^2*d^5))/(2*(a^2*b
^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)) + (((2*a*b^10*c^9*d^2 + 2*a^9*b
^2*c*d^10 - 20*a^2*b^9*c^8*d^3 + 80*a^3*b^8*c^7*d^4 - 172*a^4*b^7*c^6*d^5 + 220*a^5*b^6*c^5*d^6 - 172*a^6*b^5*
c^4*d^7 + 80*a^7*b^4*c^3*d^8 - 20*a^8*b^3*c^2*d^9)/(a^2*b^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3*
d^5 + 15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*b^2*c^4*d^4) + (x*(a*d - 5*b*c)*(-c^3*d^3)^(1/2)*(16*a^
2*b^9*c^9*d^2 - 80*a^3*b^8*c^8*d^3 + 144*a^4*b^7*c^7*d^4 - 80*a^5*b^6*c^6*d^5 - 80*a^6*b^5*c^5*d^6 + 144*a^7*b
^4*c^4*d^7 - 80*a^8*b^3*c^3*d^8 + 16*a^9*b^2*c^2*d^9))/(8*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c
^5*d)*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)))*(a*d - 5*b*c)*(-c^
3*d^3)^(1/2))/(4*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5*d)))*(a*d - 5*b*c)*(-c^3*d^3)^(1/2)*1i
)/(4*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5*d)))/(((5*a^3*b^4*d^7)/4 + (5*b^7*c^3*d^4)/4 - (21
*a*b^6*c^2*d^5)/4 - (21*a^2*b^5*c*d^6)/4)/(a^2*b^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3*d^5 + 15*
a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*b^2*c^4*d^4) - (((x*(a^4*b^3*d^7 + b^7*c^4*d^3 - 10*a*b^6*c^3*d^
4 - 10*a^3*b^4*c*d^6 + 50*a^2*b^5*c^2*d^5))/(2*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3
+ 6*a^4*b^2*c^4*d^2)) - (((2*a*b^10*c^9*d^2 + 2*a^9*b^2*c*d^10 - 20*a^2*b^9*c^8*d^3 + 80*a^3*b^8*c^7*d^4 - 172
*a^4*b^7*c^6*d^5 + 220*a^5*b^6*c^5*d^6 - 172*a^6*b^5*c^4*d^7 + 80*a^7*b^4*c^3*d^8 - 20*a^8*b^3*c^2*d^9)/(a^2*b
^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3*d^5 + 15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*b^
2*c^4*d^4) - (x*(a*d - 5*b*c)*(-c^3*d^3)^(1/2)*(16*a^2*b^9*c^9*d^2 - 80*a^3*b^8*c^8*d^3 + 144*a^4*b^7*c^7*d^4
- 80*a^5*b^6*c^6*d^5 - 80*a^6*b^5*c^5*d^6 + 144*a^7*b^4*c^4*d^7 - 80*a^8*b^3*c^3*d^8 + 16*a^9*b^2*c^2*d^9))/(8
*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5*d)*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^
5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)))*(a*d - 5*b*c)*(-c^3*d^3)^(1/2))/(4*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2
 - 3*a*b^2*c^5*d)))*(a*d - 5*b*c)*(-c^3*d^3)^(1/2))/(4*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5*
d)) + (((x*(a^4*b^3*d^7 + b^7*c^4*d^3 - 10*a*b^6*c^3*d^4 - 10*a^3*b^4*c*d^6 + 50*a^2*b^5*c^2*d^5))/(2*(a^2*b^4
*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)) + (((2*a*b^10*c^9*d^2 + 2*a^9*b^2
*c*d^10 - 20*a^2*b^9*c^8*d^3 + 80*a^3*b^8*c^7*d^4 - 172*a^4*b^7*c^6*d^5 + 220*a^5*b^6*c^5*d^6 - 172*a^6*b^5*c^
4*d^7 + 80*a^7*b^4*c^3*d^8 - 20*a^8*b^3*c^2*d^9)/(a^2*b^6*c^8 + a^8*c^2*d^6 - 6*a^3*b^5*c^7*d - 6*a^7*b*c^3*d^
5 + 15*a^4*b^4*c^6*d^2 - 20*a^5*b^3*c^5*d^3 + 15*a^6*b^2*c^4*d^4) + (x*(a*d - 5*b*c)*(-c^3*d^3)^(1/2)*(16*a^2*
b^9*c^9*d^2 - 80*a^3*b^8*c^8*d^3 + 144*a^4*b^7*c^7*d^4 - 80*a^5*b^6*c^6*d^5 - 80*a^6*b^5*c^5*d^6 + 144*a^7*b^4
*c^4*d^7 - 80*a^8*b^3*c^3*d^8 + 16*a^9*b^2*c^2*d^9))/(8*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5
*d)*(a^2*b^4*c^6 + a^6*c^2*d^4 - 4*a^3*b^3*c^5*d - 4*a^5*b*c^3*d^3 + 6*a^4*b^2*c^4*d^2)))*(a*d - 5*b*c)*(-c^3*
d^3)^(1/2))/(4*(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5*d)))*(a*d - 5*b*c)*(-c^3*d^3)^(1/2))/(4*
(b^3*c^6 - a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5*d))))*(a*d - 5*b*c)*(-c^3*d^3)^(1/2)*1i)/(2*(b^3*c^6 -
a^3*c^3*d^3 + 3*a^2*b*c^4*d^2 - 3*a*b^2*c^5*d))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)**2/(d*x**2+c)**2,x)

[Out]

Timed out

________________________________________________________________________________________